Product Support Financial Value Drivers. 7/10 – Regulatory Requirements

Nov 27

This post is the seventh of ten entries that will discuss product support financial value drivers for solutions supplied by a commercial or military focused capital good Product Support Enterprise [PSE]. The 10 topics that will be discussed are the following:

  1. # of products employed by end-users
  2. End-user product utilization rate
  3. Product failure
  4. Environment in which end users engage the product
  5. Preventive maintenance processes employed
  6. Volatility of product technology
  7. Regulatory requirements
  8. Chronological age of the product installed base
  9. Life cycle stage of the product
  10. Manufacturer’s warranty coverage

As nations become wealthier, there is a drive to mitigate the risks of occurrence of the events that unfavorably impact society – think auto safety, hazardous materials disposition, and many others. As a result, many regulatory actions have been employed by nations and local legislatures. These regulations have had a significant impact upon Product Support financial value driver results.

Product support financial value drivers – regulatory requirements

Let’s start with safety concerns. All industries have regulations that require certain Product Support processes to be employed that either protects the users of equipment, or the outputs of the equipment. Transportation equipment has as extensive amount of time/use/condition based preventive maintenance tasks to avoid any unplanned failure. From brake overhauls for trains, to flight control actuator overhauls for aircraft, very specific maintenance tasks must be performed throughout the life of the equipment; in most cases the ability to operate a piece of equipment requires that the OEM has obtained approval by a regulatory body for a detailed preventive maintenance schedule. These requirements can often drive 20-40% of the Product Support life cycle costs.

Another area of regulation driving costs is one that continues to expand every year; maintenance activities that avoid unfavorable environmental events. For example, the preventive overhaul of a valve in order to avoid failure resulting in a hazardous material spill, or the inspection of a structure for corrosion that could result in equipment releasing toxic fumes into the atmosphere. This area is specifically costly in the process industries of chemicals, oil and power generation.

In certain cases, regulatory requirements have a strange impact on Product Support costs. A case in point is in Japan and the insurance of automobiles where in order to generate demand for new cars, the Japanese government has mandated that insurance rates increase based upon the age of a vehicle. Upon a car approaching 10 years old, the insurance rates are so high that it “pays”  to get rid of the car (they leave Japan for  less developed countries) and purchase a new car. This regulation has a major impact upon the Product Support financial value driver solutions for older vehicles; there is none!

Recent changes to the fuels employed to operate equipment has created unintended impacts upon Product Support maintenance; some have decreased the frequency of unplanned failures, but others have significantly changed the frequency of preventive maintenance tasks; think bio-fuels for commercial truck engines.

The disposition of Product Support parts that are deemed hazardous materials can also increase costs; sometimes the cost of disposition is more expensive than the acquisition of the part. This is often true of certain consumables such of filters, lubricants, and others.

Product support financial value drivers – regulatory requirements

One of the Product Support financial value cost challenges is that there are many different regulations throughout the globe requiring different Product Support processes to be employed. For many global organizations, where equipment is transported to many sites, think oil drilling equipment, Product Support processes are often employed that meet the most demanding regulations of any nation that the equipment can be employed. This is done in order to be flexible in aligning demand and supply of equipment on a global basis. For example if ExxonMobil has to move equipment from Nigeria to the USA, even though Nigeria may have less demanding Product Support regulations, the Nigerian equipment is maintained to USA standards so that if demand shifts to the USA, the equipment doesn’t have to be reset to use in the USA.

All the above cases of regulatory requirements are always driven by optimizing equipment cost and minimizing its unfavorable impacts on society. Product Support costs, which constitute the plurality of Total Ownership Costs for most equipment types, will remain a primary “victim” of many of these regulations.

Product Support life cycle financial planning must include scenario-based tools that can analyze the impact of different regulatory changes upon the short-term and long-term TOC.

Hypatia©, a Giuntini & Company financial software tool, provides a highly automated means of calculating the above and other product support financial value drivers, as well as an effortless way of being able to change any utilization assumption and immediately understand its impact upon total ownership costs. Hypatia is also a proven, trusted and highly effective tool for assisting in the development of product support business case analysis.

Leave a Reply

Your email address will not be published. Required fields are marked *


HTML tags are not allowed.

Tel: 570-713-4795