Product Support Financial Value Drivers. 9/10 – Life Cycle Stage of a Product

Mar 19
2013

This blog is the ninth of ten discussing the product support financial value drivers of the solutions supplied by a commercial or military focused capital good Product Support Enterprise [PSE]. The blog will provide an overview on how the analysis of the life cycle stages of a product and its components can deliver a better understanding of the life cycle cost of a PSE.

The life cycle stage of a product inducted into a variety of Product Support processes can be broken-down into two primary stages: in-production and out-of-production, and then segmented into early, mid and late life stages. A further break-down can also be employed in which the product’s parts are either in-production or out-of-production. And finally the segmentation of a Product’s parts can be identified as being Made-To-Order [MTO], also referred to as developmental or proprietary, and Commercial Off The Shelf [COTS]. For each stage analyzed, the following 5 financial elements must also be reviewed:

  1. Direct resources: Tech labor (i.e. maintainers, tech reps)
  2. Direct resources: Parts (i.e. reparable, non-reparable)
  3. Indirect resources: Process flow (i.e. shop building, test equipment, schedulers)
  4. Indirect resources: Direct resource management (i.e. warehouse, transport, packaging, training)
  5. Indirect resources: PSE oversight management (i.e. offices, data infrastructure, leadership)

The blog will be a series of the following 3 charts providing a template for a variety of discussions in establishing PSE solutions throughout the life cycle of a product:

  1. Product life cycle graph and corresponding PSE activity
  2. Table of life cycle stages and potential scenarios; there can be many more scenarios that can be reviewed
  3. Example of inputs for each life cycle scenario selected

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The purpose of this BLOG was only to skim the surface as to the multiple questions that must be addressed when reviewing a Product’s life cycle and its financial impact upon the PSE.

Hypatia©, a Giuntini & Company financial software tool, provides a highly automated means of calculating the above and other product support financial value drivers, as well as an effortless way of being able to change any utilization assumption and immediately understand its impact upon total ownership costs. Hypatia is also a proven, trusted and highly effective tool for assisting in the development of product support business case analysis.

Product Support Financial Value Drivers. 4/10 – Operating Environment in Which End-Users Engage the End-Item

Oct 19
2012

This post is the fourth of ten entries that will discuss product support financial value drivers for solutions supplied by a commercial or military focused capital good Product Support Enterprise [PSE]. The 10 topics that will be discussed are the following:

  1. # of products employed by end-users
  2. End-user product utilization rate
  3. Product failure
  4. Environment in which end users engage the product
  5. Preventive maintenance processes employed
  6. Volatility of product technology
  7. Regulatory requirements
  8. Chronological age of the product installed base
  9. Life cycle stage of the product
  10. Manufacturer’s warranty coverage

Product Support Financial Value Drivers

There are many attributes of an operating environment that can have an impact upon Product Support financial drivers and performance. For some end-items, the impact is quite material, and for others not as much. OEMs, when designing their products, are quite aware of the operating environment of their end-items, and in turn adapt their design to minimize the operating environment’s impact Total Ownership Cost [TOC]. The OEM still will acknowledge that there will be financial implications, that can be material, especially if the instructions in their maintenance manuals are not followed.

There are 6 factors impacting Product Support financial driver performance:

1. Temperature
The majority of products are designed to meet their performance attributes within a range of temperatures. For example, aircraft, during the certification process, are tested in extreme cold temperatures, as well as in extreme hot temperatures. This assures end-users that all subsystems can function within a wide range of operating environments.

Where Product Support financials are impacted is when the end-user employs the end-item outside the temperature design range for any extended period of time. One example is a Class 8 truck designed for the North American market is exported to sub-Sahara Africa where temperatures can exceed that of the design threshold. Reliability issues can surface quickly resulting in much downtime.

Another example is an electronic device requiring cool external temperatures in order to offset the high temperatures generated by the device. Without the proper conditioning of air, reliability can materially decline.

2. Humidity
This is a major product support financial driver for the Product Support processes engaged in the repair of structural items. Again OEMs design attributes that attempt to minimize the impact of humidity. For example, Boeing in their new 787, reduced the impact of humidity on the corrosion of aluminum, by replacing large sections of the aluminum airframe with non-corroding fiber composites. Vehicle OEMs have dramatically reduced the impact of humidity through higher tech paints and their application.

The employment of preventive measures to assure that humidity does not corrode an end-item is the preferred solution for this area.

3. Particles
Sand, dust, dirt and other particles can cause the employment of multiple Product Support processes; from reliability issues related to mechanical parts becoming impeded, to cosmetic issues of a “dirty” end-item, and to items wear and tear being accelerated as a result of grinding caused by sand. Again OEMs are quite aware of these issues and indicate courses of action in their maintenance manuals, but it doesn’t preclude the end-user from being financially impacted by the presence of these particles due to the preventive maintenance activities that are performed on a periodic basis.

4. Fluids
The effective management of the impact of salt water, chemicals, oils and other fluids can improve Product Support financial performance. For example end-items employed in the transportation field, trucks, aircraft, ships and trains all have extensive Product Support programs to minimize the financial impact of salt water; from fresh water washing to periodic disassembly/clean/reassembly. Manufacturing equipment is often subjected to chemical and oil exposure requiring the employment of preventive Product Support processes.

5. Hours of Operation
For certain end-users they can only operate their end-items during specific times of the day; could be safety related, pollution related or noise related. For example trucks cannot idle in an urban area after 2200, or aircraft cannot depart after 2100, or building construction activities cannot occur during the week-end. Whatever the situation, a Product Support Enterprise must deliver solutions that adapt to these constraints. Often Product Support processes will be performed during the hours that the end-user cannot employ its end-items; for labor this can result in higher costs related to shift differentials, or requiring more Product Support parts safety stock, due to parts suppliers not being available to delivery items during off-hours.

6. End-Item Operator
Challenges in adopting to a new technology, loss of experience due to high operator turnover, employee malfeasants (i.e. union “thuggery”) and other elements related to an end-item operator’s unfavorable impact Product Support financial performance is a continuing occurrence to be dealt with in developing solutions for a Product Support Enterprise. Improved operator training programs, user-friendly operator manuals, electronic monitors identifying end-user abuse and other resources can be employed to mitigate the additional financial impact of these challenges.

Product support financial value drivers

Understanding how an end-item is operated in developing a scenario-based Product Support life cycle financial plan or product support business case analysis is just one more element to consider. My recommendation is to have an “operating environment” weight in your Cost Estimating Relationship [CER] input; you might not know exactly how changing operating environments may impact you, but you can take a guess and once real data sets can be captured, you will have a place holder to make those changes.

Hypatia©, a Giuntini & Company financial software tool, provides a highly automated means of calculating the above and other product support financial value drivers, as well as an effortless way of being able to change any utilization assumption and immediately understand its impact upon total ownership costs. Hypatia is also a proven, trusted and highly effective tool for assisting in the development of product support business case analysis.

info@giuntinicompany.com

Tel: 570-713-4795